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Autosomal-Recessive Early-Onset Retinitis Pigmentosa
Caused by a Mutation in PDE6G, the Gene Encoding
the Gamma Subunit of Rod cGMP Phosphodiesterase

Liron Dvir,1,2 Gassoub Srour,3 Rasmi Abu-Ras,3 Benjamin Miller,2,4 Stavit A. Shalev,2,5,6

and Tamar Ben-Yosef1,2,6,*

Retinitis pigmentosa (RP) is the most common form of hereditary retinal degeneration, with a worldwide prevalence of 1 in 4000. Over

30 genes and loci have been implicated in nonsyndromic autosomal-recessive (ar) RP. Genome-wide homozygosity mapping was con-

ducted in two sibships from an extended consanguineous Muslim Arab Israeli family segregating ar severe early-onset RP. A shared

homozygous region on chromosome 17q25.3 was identified in both sibships, with an overlap of 4.7 Mb. One of the genes located in

this interval is PDE6G, encoding for the inhibitory g subunit of rod photoreceptor cyclic GMP-phosphodiesterase. Mutations in the

genes encoding for the catalytic subunits of this holoenzyme, PDE6A and PDE6B, cause arRP. Sequencing of all coding exons, including

exon-intron boundaries, revealed a homozygous single base change (c.187þ1G>T) located in the conserved intron 3 donor splice site of

PDE6G. This mutation cosegregated with the disease in the extended family. We used an in vitro splicing assay to demonstrate that this

mutation leads to incorrect splicing. Affected individuals had markedly constricted visual fields. Both scotopic and photopic electrore-

tinogramswere severely reduced or completely extinct. Funduscopy showed typical bone spicule-type pigment deposits spreadmainly at

the midperiphery, as well as pallor of the optic disk. Macular involvement was indicated by the lack of foveal reflex and typical cystoid

macular edema, proved by optical coherence tomography. These findings demonstrate the positive role of the g subunit in maintaining

phosphodiesterase activity and confirm the contribution of PDE6G to the etiology of RP in humans.
Retinitis pigmentosa (RP, MIM 268000) is the most

common form of hereditary retinal degeneration. The

prevalence of RP in various western countries, including

Israel, is approximately 1 in 4000.1,2 RP reflects a heteroge-

neous group of retinal dystrophies characterized by night

blindness followed by visual field loss and often resulting

in severe visual impairment. Ophthalmologic findings

include characteristic pigmentation of the midperipheral

retina, attenuation of retinal arterioles, and pale appear-

ance of the optic disk.3 The disease is very heterogeneous,

both clinically and genetically, and can be inherited as

an autosomal-recessive (ar), autosomal-dominant (ad), or

X-linked trait.1 A digenic pattern of inheritance has also

been described.4 Over 40 genes and loci have been impli-

cated in nonsyndromic RP, of which over 30 are associated

with an ar mode of inheritance (Retnet: Retinal Informa-

tion Network). However, it is estimated that the genes

underlying 50% of RP cases are still unknown.

In an effort to identify previously unrecognized retinal

degeneration genes, we ascertained two nuclear Israeli

consanguineous families of Muslim Arab origin that

belong to the same extended family (family TB14, Figures

1A and 1D). In each family, the parents are first cousins.

In each of the families, there are two individuals affected

with severe early-onset RP (Figure 1A). The study was

approved by the institutional review board at Ha’Emek

Medical Center and by the National Helsinki Committee
1Rappaport Family Institute for Research in the Medical Sciences, Haifa 31096

Services, North District, Nazareth-Illit 17106, Israel; 4Alberto Moscona Depa
5Genetics Institute, Ha’Emek Medical Center, Afula 18101, Israel
6These authors contributed equally to this work

*Correspondence: benyosef@tx.technion.ac.il

DOI 10.1016/j.ajhg.2010.06.016. �2010 by The American Society of Human

258 The American Journal of Human Genetics 87, 258–264, August 1
for Genetic Research in Humans. Informed consent was

obtained from all participants or their parents.

To identify the mutated gene, we performed genome-

wide homozygosity mapping with the Infinium Human

Linkage 12 Genotyping Bead Chip (Illumina), which is

capable of genotyping 6090 highly informative SNPs

with an average genetic distance of 0.58 cM across the

human genome. The only homozygous region shared

among all four affected individuals was a 5.2 Mb interval

at the telomeric end of chromosome 17 (17q25.3),

between SNP rs10931 and the telomere (Figure 1B). SNP

analysis in both families, including nonaffected siblings

and parents, confirmed that the region segregates with

arRP (Figure 1A). A recombination event in individual

III-24 reduced the interval to 4.7 Mb between SNP

rs868432 and the telomere (Figures 1A and 1B). This

interval includes 203 genes. One of these genes is

FSCN2 (fascin homolog 2, GenBank accession number

NM_001077182), which is associated with adRP (MIM

607921, MIM 607643).5 Sequence analysis of the five

coding exons of FSCN2 was performed with the Big Dye

Terminator Cycle Sequencing Kit (PE Applied Biosystems).

No mutation was detected in affected individuals.

Another gene located within the homozygous interval

is PDE6G (GenBank accession number NM_002602,

MIM 180073), which encodes for the inhibitory subunit

of rod photoreceptor cyclic GMP-phosphodiesterase
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Figure 1. Genetic Analysis in Family TB14
(A) Shown are the two sibships segregating the c.187þ1G>Tmutation of PDE6G. SNP analysis performed on each of the sibships demon-
strates cosegregation of a 17q25.3-linked haplotype with arRP. Double lines indicate consanguineous unions. Filled symbols represent
affected individuals, whereas clear symbols represent unaffected individuals. Mutation-bearing haplotypes aremarked by black bars. The
position of the SNPs, based on the Human Genome Browser working draft hg18, is indicated between parentheses.
(B) Shown is chromosome 17 with the linkage intervals and the corresponding SNPs. FSCN2 and PDE6G reside within the region that is
shared by all affected individuals. Also shown is the genomic structure of PDE6G. Coding exons are represented by black boxes. Non-
coding exons are represented by white boxes. The location of the c.187þ1G>T mutation is indicated.
(C) Sequence chromatograms for the c.187þ1G>T mutation of PDE6G in a noncarrier individual (WT), an individual heterozygous for
the mutation (het), and an affected individual homozygous for the mutant allele (mut). The exon-intron boundary is marked.
(D) A pedigree of the extended family TB14. Affected individuals are marked in black. Genotypes at the c.187þ1 position are indicated.
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Figure 2. Minigene Constructs and Products Obtained in the
In Vitro Splicing Assay
(A) Shown is a schematic representation of the constructs, which
include PDE6G exons 2 to 4 (represented by white boxes) flanked
by 82–263 bp of intronic sequences (represented by straight lines).
Vector-derived sequences are represented by a black box.
Constructs harbor either theWTor the c.187þ1G>Tmutant allele
at the donor splice site of intron 3. The locations of primers used
for RT-PCR analysis are indicated by arrows (a forward primer
located in exon 2 and a vector-derived reverse primer). Also shown
are the obtained splicing products. Sizes of exonic and intronic
fragments are indicated below them.
(B) WT and mutant (mut) constructs were transfected into Y79
cells, followed by RNA extraction and RT-PCR analysis. No PCR
products were obtained from cells transfected with the empty
pCMV-script vector (vec). b-actin (ACTB) served as an internal
control for RNA quality and quantity. M denotes size marker.
(cGMP-PDE), one of the key enzymes of the visual photo-

transduction cascade in the vertebrate retina. The holoen-

zyme is a heterotetrameric complex consisting of two large

catalytic subunits, a (88 kDa) and b (84 kDa), and two iden-

tical inhibitory subunits, g (11 kDa).6 Mutations in the

genes encoding for the catalytic subunits of this holoen-

zyme, PDE6A and PDE6B, cause arRP in humans7,8 and

retinal degeneration in animal models (MIM 180071,

MIM 180072).9–12 Moreover, retinal degeneration that

resembles human RP was identified in mice lacking the

gene encoding for the g inhibitory subunit Pde6g.13 The

human PDE6G gene has been previously considered as

a candidate for RP.14,15 However, pathogenic mutations

of this gene have not been reported to date.

PDE6G harbors four exons. Sequence analysis of the

three coding exons (exons 2–4), including exon-intron

boundaries, was performed in an affected individual (indi-

vidual III-26, Figure 1A). Primer sequences are listed in

Table S1 available online. We identified a homozygous

single base change, a G-to-T transversion located in the

conserved intron 3 donor splice site (c.187þ1G>T)

(Figure 1C). This base change cosegregated with RP in

the two sibships (Figure 1A). Analysis of 25 additional

members of the extended family, including two additional

affected individuals, confirmed cosegregation of the muta-

tion with the disease. All unaffected individuals were

either heterozygotes or carried two wild-type (WT) copies.

Only the six affected individuals were homozygotes for

the identified sequence change (Figure 1D). According

to the splice-site consensus sequence in mammals, a G is

located at position þ1 of the donor site.16 To predict

the effect of c.187þ1G>T on splicing, we performed

in silico analysis of the sequence with two different

web-based tools (Splice Site Prediction by Neural Network

and MaxEntScan). Both algorithms predicted that the

c.187þ1G>T change leads to elimination of intron 3

donor site.

Because of the limited expression pattern of PDE6G, we

could not evaluate the effect of c.187þ1G>T on splicing

in patient-derived RNA. Alternatively, we used an in vitro

splicing assay approach. For this purpose, we created

a minigene construct. This construct harbors PDE6G

exons 2, 3, and 4, flanked by 82–263 bp of intronic

sequences, downstream of a cytomegalovirus (CMV) pro-

moter (Figure 2A). Two different constructs were created:

a construct harboring the WT allele (c.187þ1G) and

a construct harboring the mutant allele (c.187þ1T). Each

construct was transfected into the Y79 retinoblastoma-

derived cell line, followed by RNA extraction and RT-PCR

analysis. To analyze the results, we sequenced the splicing

products derived from each construct. RNA derived from

the WT construct yielded a main correctly spliced product

of 433 bp, which included exons 2, 3, and 4. RNA derived

from the mutant construct yielded a main aberrantly

spliced product of 461 bp. In this product, a cryptic donor

splice site, located 28 bp downstream of the mutant splice

site within intron 3, was used. Both WT and mutant
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constructs also yielded an additional minor product of

392 bp, in which exon 3 was skipped (Figure 2).

To date, two PDE6G splice variants have been reported:

variant 1 (GenBank accession number NM_002602)

includes exons 1–4 and encodes for the full-length protein

of 87 amino acids, whereas variant 2 (GenBank accession

number NR_026872) is noncoding as a result of the

skipping of exon 2. To test whether alternative splicing

of exon 3 occurs in vivo, we performed RT-PCR analysis

on human retina RNA with primers derived from exons 2

and 4. Only one product was obtained, which included

exon 3 (data not shown). In addition, BLAST searches

against RNA and EST databases revealed no indication for

the existence of PDE6G transcripts lacking exon 3. We

therefore concluded that exon 3 skipping may be an arti-

fact of the in vitro splicing assay.

The in vitro splicing assay we performed demonstrates

that an intron 3 donor splice site harboring the

c.187þ1G>T change is not efficiently recognized by the

human splicing machinery. Although the exact effect of

this splicing mutation on PDE6G transcripts in human

retina is not known, the expected outcome is incorrect
3, 2010



splicing, leading to an abnormal protein product. The

length of WT PDE6G protein is 87 amino acids. The use

of a cryptic intron 3 donor splice site is expected to yield

a protein of 114 amino acids, in which the last 52 amino

acids (at positions 63–114) are incorrect.

To screen control DNA samples for c.187þ1G>T, we

used a restriction-based assay. No carriers of c.187þ1G>T

were identified among 256 Muslim Israeli control subjects,

including 135 Muslim Arabs from Northern Israel, 70

Muslim Arabs from Central Israel, and 51 Bedouins.

However, c.187þ1G>T was found heterozygously in 7 of

84 random adults from the same village in which family

TB14 resides (village E), thus indicating a carrier frequency

of 8.3% (95% confidence interval, 3.6%–15.4%) in this

village. c.187þ1G>T is therefore a founder mutation of

village E and is rare in the surrounding Muslim Arab

population. Most of the Israeli Arab population has been

living in small, relatively isolated localities, which were

originally settled by a small number of founders. Most of

the genetic diseases frequent among Israeli Arabs are due

to founder effects.17 For example, we have recently identi-

fied a single founder mutation of PRCD that leads to a

high frequency of RP in another Muslim Arab Israeli

village, in which the carrier frequency is 10%.18 The iden-

tification of c.187þ1G>T as a common RP-causing muta-

tion in village E will allow for sensitive and cost-effective

use of genetic testing for carrier screening and diagnostic

purposes.

In an effort to identify additional PDE6G mutations, we

sequenced the three coding exons of 119 unrelated Israeli

patients with RP and Leber’s Congenital Amaurosis (LCA),

but no mutations were found. In addition, we analyzed

whole-genome homozygosity mapping data of 90 unre-

lated RP and LCA patients from consanguineous families.

Four of these patients had homozygous regions harboring

PDE6G, but sequencing analysis revealed no mutations.

These patients had multiple large homozygous regions,

and we predict that their disease is caused by other genes.

In total, we analyzed data from 209 RP and LCA patients,

with negative results, indicating that PDE6G mutations

are very rare and that their contribution to the overall

prevalence of RP and/or LCA in the Israeli population is

minor. Similar results were obtained by Hahn et al.,15

who screened the PDE6G gene by SSCP analysis in a total

of 704 unrelated patients with various forms of hereditary

retinal degeneration, including 471 patients with RP and

41 patients with LCA, and found no mutations.

Clinically, the affected individuals described here have

severe early-onset RP. Both scotopic and photopic electro-

retinograms (ERGs) were markedly reduced or completely

extinct by as early as 4 years of age. Visual evoked poten-

tials (VEPs) were of normal waveforms but prolonged

implicit time (data not shown). Funduscopic examination

revealed relatively mild yet typical bone spicule-type

pigment deposits in the periphery and midperiphery. In

the younger patients (aged 10 and 12), blood vessels and

optic disk were normal, whereas in their older siblings
The Americ
(aged 15 and 16), blood vessel attenuation and pallor of

the optic disk were observed. Macular involvement in all

patients was indicated by the lack of foveal reflex and cys-

toid macular edema documented by optical coherence

tomography (OCT). All patients had markedly constricted

visual fields, ranging from 10� to less than 5�, with tiny

residual islands of central vision. Nevertheless, best-cor-

rected visual acuity was relatively good (Table 1; Figure 3).

These findings are similar to those reported in RP patients

due to mutations in PDE6A and PDE6B.7,8,19

As indicated before, cGMP-PDE is a key enzyme in the

visual phototransduction cascade. Vision begins when

a molecule of visual pigment, 11-cis-retinal, is photoiso-

merized by a photon of light, leading to the generation

of metarhodopsin II (R*). R* activates the G protein trans-

ducin, which in turn stimulates the activity of its effector

enzyme, cGMP-PDE. This activation is achieved by

binding of transducin to the Pg subunit, thereby removing

the inhibitory constraint from the Pa and Pb catalytic

subunits. The activated PDE lowers the intracellular

concentration of cGMP, thereby closing cGMP-gated

cation channels located on the rod plasma membrane

and initiating a neural response to light.20

As can be expected, elimination of Pa and Pb activity

results in arRP in humans and retinal degeneration in

mice.7–12 In contrast, the absence of Pg might be expected

to reduce rod cGMP levels by allowing the constitutively

uninhibited activity of Pab. Consequently, the cGMP-

gated cation channels would be permanently closed,

eliminating the rod’s response to light. Interestingly, a

heterozygous missense mutation in Pb was identified

in a family segregating autosomal-dominant congenital

stationary night blindness (CSNB), a condition in which

rods have reduced light sensitivity but do not degenerate.

This missense mutation was eventually found to impair

the inhibitory interaction between Pb and Pg.4,21 More-

over, the p.W70A missense mutation in Pg in mice led to

rod desensitization and delayed response, a phenotype

similar to CSNB in humans.22 Surprisingly, complete elim-

ination of Pg in mice resulted in a different phenotype

that involved retinal degeneration and resembled RP in

humans. Retinal cGMP levels in Pde6g null mice were

increased, not decreased as may have been expected. The

authors hypothesized that the high cGMP concentrations

may keep cGMP-gated cation channels open continuously

and lead to an excessive energy load on rod photorecep-

tors, resulting in degeneration.13 A transgenic allele of Pg

lacking the last 7 amino acids of its C terminus did not

rescue the null phenotype.23 The conclusion was that the

interaction of Pg with Pab through its C terminus has

a positive role for the proper activation of PDE and that

all three subunits are essential for assembly of a stable,

active holoenzyme.13,23 Further support for these conclu-

sions came from biochemical and structural analyses.

These indicated that Pg domains in charge of transducin

binding (T62-I87) and Pab inhibition (N74-I87) are located

in the C terminus and are overlapping.24–26 The current
an Journal of Human Genetics 87, 258–264, August 13, 2010 261



Table 1. Clinical Characteristics of Individuals Homozygous for the PDE6G c.187þ1G>T Mutation

Patient
Number,
Sex

Age
(yrs) Eye Refractive Error

Visual
Acuitya Visual Field

Full-Field Electroretinogram

LA: Single Flashb LA: Flicker (30 Hz)c

Amp
(mV)

Latency
(mS)

Amp
(mV)

Latency
(mS)

DA:
Dim
(mV)d

DA:
Moderate
(mV)e

DA:
Bright
(mV)f

III-25, F 4 OD ND ND ND 10 44 9 27 b 0 a 17, b 12 a 27, b 45

OS ND ND ND ND ND ND ND ND ND ND

12 OD �2.25/�0.75 3 170� 6/12 <5� ND ND ND ND ND ND ND

OS �1.50/�1.00 3 40� 6/12 10� ND ND ND ND ND ND ND

III-26, M 16 OD �3.00/�2.50 3 180� 6/12 5� ND ND ND ND ND ND ND

OS �1.50/�2.75 3 180� 6/12 5� ND ND ND ND ND ND ND

III-18, M 10 OD ND 6/12þ ND 0 � 0 � b 0 a 0, b 0 a 0, b 0

OS ND 6/12þ ND ND ND ND ND ND ND ND

15 OD �1.00/�0.25 3 160� 6/18 5� NA NA NA NA NA NA NA

OS �0.25/0.00 6/12 10� horizontal,
5� vertical

NA NA NA NA NA NA NA

III-19, M 7 OD ND 6/12 ND 0 � 0 � b 0 a 0, b 0 a 0, b 0

OS ND 6/12 ND ND ND ND ND ND ND ND

10 OD þ1.75/�1.25 3 180� 6/18� <5� NA NA NA NA NA NA NA

OS þ1.75/�2.00 3 170� 6/18� <5� NA NA NA NA NA NA NA

The following abbreviations are used: F, female; M, male; OD, right eye; OS, left eye; ND, not determined; LA, light adaptation (cone ERG); DA, dark adaptation
(rod ERG); NA, not applicable.
a Best-corrected visual acuity.
b Normal amplitude (amp) is 100–300 mV; normal latency is 26–30 mS.
c Normal amplitude (amp) is 60–180 mV; normal latency is 25–30 mS.
d Normal b wave is 130–330 mV.
e Normal a wave is 150–320 mV; normal b wave is 290–500 mV.
f Normal a wave is 320–520 mV; normal b wave is 410–610 mV.
hypothesis is that the interaction between activated trans-

ducin and Pg triggers a conformational change and results

in a rigid bodymovement of PgC terminus away from Pab,

whereas Pg central region could stay bound to Pab until

the binding is weakened by lowered cGMP levels.27

Based on our in vitro splicing assay, the splicing product

obtained from the c.187þ1G>T mutant allele encodes for

an abnormal Pg protein in which the last 25 amino acids

(D63-I87) are replaced by 52 irrelevant amino acids. The

missing amino acids include the overlapping regions

responsible for transducin binding and Pab inhibition.

Based on the data presented above, this mutant protein

will not enable the formation of an active PDE holoen-

zyme. This is in agreement with the observed phenotype,

which resembles the phenotype of Pde6g null mice13 and

involves severe early-onset retinal degeneration. Neverthe-

less, it is possible that different mutant alleles of PDE6G

will be discovered in the future in patients with CSNB.

Unlike the other components of rod PDE, Pg is expressed

in nonocular tissues and was found to have important

functions, including regulation of p42/p44 MAPK-depen-

dent signaling in HEK293 cells,28 prevention of phosphor-

ylation and activation of lung PDE5 by protein kinase A,29
262 The American Journal of Human Genetics 87, 258–264, August 1
and interaction with SH3-containing proteins.30 Based on

these findings, it could be expected that elimination of Pg

would elicit extraocular phenotypes. However, such

phenotypes were not detected in Pde6g null mice13 or in

our human RP patients.

In summary, the crucial role played by cGMP-PDE in

normal retinal function is well established. Mutations in

the catalytic a and b subunits of this holoenzyme are

a known cause of arRP. The data presented here demon-

strate the positive role of the g subunit in maintaining

PDE activity and confirm the contribution of PDE6G to

the etiology of RP in humans.
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Supplemental Data include one table and can be found with this

article online at http://www.cell.com/AJHG/.
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Figure 3. Fundus Photographs and Optical Coherence Tomography in Affected Individuals from Family TB14
(A and C) Fundus photograph (A) and OCT (C) of individual III-19 at the age of 10 years, demonstrating normal blood vessels and optic
disk, peripheral bone spicule-type pigment deposits, absence of a foveal reflex, and mild cystoid macular edema.
(B and D) Fundus photograph (B) and OCT (D) of individual III-26 at the age of 16 years, demonstrating attenuation of retinal blood
vessels, pale optic disk, tapetoretinal degeneration with unhealthy discoloration of the macula, absence of a foveal reflex, and severe
cystoid macular edema.
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